CSIS 4222

Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

Internet Firewall

- Used by a network administrator to manage traffic flow in and out of the internal network
- Implements a security policy and rejects any traffic that doesn't adhere to it
- Primary means of accomplishing this is through *packet filtering*

Packet Filtering

Filtering decisions typically based on fields in a packet's header:

- IP source or destination address
- TCP or UDP source and destination port
- ICMP message type
- Connection initialization datagrams using the TCP SYN or ACK bits

Examples

- To block all telnet connections Block TCP segments whose source or destination port number is 23
- To block streaming video Block all UDP segments
- To prevent external clients from connecting
- to internal servers Block incoming TCP segments with ACK=0 (all other segments have ACK=1)

Linux Packet Filtering

The Linux iptables program acts as a packet filter

- Used to design a firewall to protect a single computer
- Filters traffic based on port numbers, addresses, and flags
- Organizes rules into groups called chains Input, output, and forward are built-in chains
- Rules are applied in order, first match is the one used
- A policy specifies how to handle packets that do not match any rules.

Adding Filtering Rules

Accept incoming TCP packets on interface eth0 from any IP address destined for 192.168.1.1

iptables -A INPUT -i eth0 -d 192.168.1.1 -p TCP -j ACCEPT

Reject ping packets from 192.168.1.5

iptables -A INPUT -s 192.168.1.5 -p icmp -j REJECT

Stateful Firewalls

A *stateful* firewall allows traffic from inside the network to exit but doesn't allow general traffic from outside to enter

Outside packets can enter only if they match a request from within the network

Keeps track of packet flow

Maintains information about recent history of *traffic on a connection*

Stateful Firewalls

Example: Host requests a page from a web server outside the network

- Firewall recognizes SYN packet from host and creates a state w/source and destination IP addresses
- Web server returns a SYN-ACK which the firewall allows to pass through
- State is maintained until connection ends

Intrusion Detection Systems (IDS)

- Monitors all arriving packets and notifies the site administrator if a security violation is detected
- Provides an extra layer of security awareness even if a firewall prevents an attack
- Can be configured to watch for specific types of attacks
 - Example: port scanning

Content Scanning and Deep Packet Inspection

A firewall only examines fields in a packet header

- Cannot test the payload of a packet for viruses, etc.
- This requires content analysis:
 - File scanning
 - Deep Packet Inspection (DPI)

Content Scanning

Take a file as input and looks for suspicious byte patterns

- Many virus scanners look for strings of bytes known as a fingerprint
- Virus scanner software searches files for such sequences
- File scanning can make mistakes
 - false positive
 - false negative

Deep Packet Inspection

Operates on packets

- Examines the data in the packet payload
- Includes the header fields
- In many cases, the payload cannot be interpreted without examining fields in the packet header

Disadvantage of DPI is computational overhead

Routing Terminology

Forwarding

- Refers to datagram transfer
- Uses routing table
- Performed by host or router

Routing

- Refers to propagation of routing information
- Inserts / changes values in routing table
- Performed by routers

Routing Issues

A routing algorithm must provide:

Correctness and simplicity: Networks are never taken down; individual parts (e.g., links, routers) may fail, but not the whole network

Stability: Handle topology and traffic changes without aborting jobs, rebooting, etc.

Fairness and optimality: Often in conflict. Fairness is not part of definition of optimality.

Two Forms of Internet Routing

Static routing

- Forwarding table initialized when system boots
- No further changes

Dynamic routing

- Table is initialized when system boots
- Routing software learns routes and updates table
- Continuous changes are possible

Dynamic Routing and Routers

- Routing software updates the local forwarding table when it learns about changes in routes
- Routers exchange information periodically
- In the example:
 - R_2 will install a route to network 1 and R_1 will install a route to network 2
 - If R_2 crashes, the route propagation software in R_1 will detect that network 2 is no longer reachable and will remove the route from its forwarding table
 - Later, when R_2 comes back on line, the routing software in R_1 will determine that network 2 is reachable again and will reinstall the route

Routing in the Global Internet

A route propagation protocol allows one router to exchange routing information with another

- · But this cannot scale to the entire Internet
 - Routers and networks in the Internet are divided into groups
 - All routers within a group exchange routing information
 - Then, at least one router (possibly more) in each group summarizes the information and passes it to other groups

How big is a group?

- To accommodate organizations of various size, no exact group size is dictated
- What protocol do routers use within a group?
 - Each organization can choose a routing protocol independently
- What protocol do routers use between groups?
 - Interconnected groups must agree

Autonomous Systems

An autonomous system is a region of the Internet (networks and routers) that is administered by a single authority Examples:

- UUNet (Verizon) backbone network
- Regional Internet Service Provider
- A big university

Each AS chooses a routing protocol

Internet Routing Protocol Classes

Interior Gateway Protocols (IGPs)

- Used by routers within an autonomous system
- Destinations lie within same AS
 Example protocols
- RIP (old but simple)
- OSPF (better)

Exterior Gateway Protocols (EGPs)

- Used between autonomous systems
- Destinations lie throughout Internet
- Example protocols
 EGP
 - BGP (more recent)

Optimal Routes and Routing Metrics

Typical Internet routing uses a combination of two metrics:

Hop count and Administrative cost

- Hop count gives the number of intermediate networks on the path to the destination
- Administrative costs are assigned manually
 - Often to control which paths traffic can use
 - Routing software chooses the least cost path

other ISPs.
Datagrams destined for network D can begin to arrive after the ISP advertises it

Distance Vector Routing All nodes start by building a local view of what nodes are 1 hop away. Every node sends its vector to its directly connected neighbors. F tells A that it can reach G at cost 1. A knows it can reach F at cost 1, so it updated its own vector to indicate that it can reach G at cost 2. Higher cost routes to G will be ignored, finding a lower cost route will replace the route currently in the vector After a few iterations of these exchanges, the routing table converges to a consistent state. Triggered updates: Every time you Periodic updates: Every t seconds, send learn new info from a neighbor that local info to your neighbors. This makes you to update your local vector, informs other nodes that you are running. send the recomputed vector to all your neighbors.

Internet Routing Protocols (Interdomain)

Border Gateway Protocol (BGP-4)

- Currently the EGP of choice for the Internet
- Provides routing between autonomous systems
- Gives path of autonomous systems for each destination
- Uses reliable transport (TCP)
- Distance vector algorithm

BGP Tracing: http://www.routeviews.org/

Internet Routing Protocols (Intradomain)

Routing Information Protocol (RIP)

- Routing within an autonomous system (IGP)
- Hop count metric
- Distance vector algorithm
- Unreliable transport (uses UDP)
- Implemented by the Unix program routed

Link State Routing

- · Each node knows the distance to its neighbors
- The distance information (link state) is broadcast to all nodes in the network
- Each node calculates its routing table independently
 - Route calculations based on Dijkstra's shortest-path first algorithm

Internet Routing Protocols (Intradomain)

Open Shortest Path First Protocol (OSPF)

- Routing within an autonomous system (IGP)
- More powerful but more complex than RIP
- Can scale to handle a much larger number of routers than other IGPs
- Uses SPF algorithm

OSPF Areas and Efficiency

- Allows subdivision of AS into areas
- Link-status information propagated within area
- Routes summarized before being propagated to another area
- Reduces overhead (less broadcast traffic)

Link-Status in the Internet

- Router corresponds to a node in a graph
- Network corresponds to an edge
- Adjacent pair of routers periodically
 - Test connectivity
 - Broadcast link-status information to area
- Each router uses link-status messages to compute shortest paths

