APPENDIX

YIELD TABLES

Tables 20 to 39 include the yield tables for southern white cedar and other tables accessory to them and necessary for their proper application. The yield tables proper, Tables 25, 30, 35, and 39, show, in various units of measurement, the volume of wood which an acre of well-stocked cedar will yield at various ages. For a discussion of their general application see pages 23 to 25. The yield tables were prepared by the alinement-chart method (9). Average height of the dominant and codominant trees at the standard age of 50 years was used as the basis for site classification. (Fig. 17.) The tables for the total stand include all living trees 1 inch and larger in diameter at breast height.

The data given in Tables 21 to 39, inclusive, are shown in compact graphical form in a single system of alinement charts (Fig. 18), from which the tables were read. For ordinary purposes the tables are sufficient, but in more accurate work, where values must be interpolated for odd ages and to the nearest foot of site index, the alinement charts may be used. Such charts are read by passing a straight line through a known value on each of two axes and reading the unknown value at its intersection with the third. They obviate the labor and inaccuracies of arithmetic interpolation, since values can be read from the charts for any age or site index within their limits. The compactness of this form of expression makes the alinement-chart yield table of practical value in field use.

To obtain readings for-	Hold age on—	Hold site index on	Read-	Multiply by—
 A. Site classification hold age on B, height of average dominant on X, read site index on B'. B. Height of average dominant	B CD FF F L M N O K J I H	B' C' D' F' F' F'	X X X X X	

Multiply the entire stand volume by the percentages and ratios read, holding the entire-stand value on A, the percentage or ratio on A', reading the partial-stand value on X, pointing off as with a slide rule. Similarly, bark volume of the entire stand can be obtained from P. Nores.—The cubic feet per cord values (O) represent the ratio of cubic feet (entire stem, less bark) to cords (to 3-inch top d. i. b.). The board feet per cubic foot values (I) represent the ratio

Board feet stand 8 inches plus Total cubic feet entire stand

¹ The following yield tables were prepared by L. H. Reineke and C. F. Korstian from field data collected by the Appalachian Forest Experiment Station in cooperation with the State foresters of North Carolina, Virginia, and New Jersey.

53

TABLE 20.—Distribution by age and site-quality classes of the 47 well-stocked, even-aged plots upon which the yield tables are based 12

				Site index	3				
Age (years)	20	30	40	50	60	70	Total		
	Number of plots								
20					- 1		1		
40 50			3	1		2	5 2		
60 70	2				1		10 5		
80 90				. 2.		L	21 2 1		
Total	2	2	9	13	18	3	47		

¹ Deviations of individual plots from yield tables are as follows:

56

.

-	· · · · ·	· .	Measurement		Aggregate deviation	Average percentage deviation
Basal are	8			· · ·	 Per cent	Per cent
Number Volume, Volume,	of trees cubic feet by intern	t ational (/s-inch) rule		 $ \begin{array}{r} -0.49 \\ +0.38 \\ -0.23 \\ -1.13 \\ \end{array} $	± 7.0 ± 26.6 ± 7.9 ± 35.2

² A total of 63 plots was measured from Florida (1 plot) to Massachussetts (3 plots). The 47 well-stocked plots mathematically selected for yield-table construction are distributed as follows: North Carolina, 11; Virginia, 21; New Jersey, 13; Connecticut, 2. ³ Site index is the height attained in 50 years by dominant trees of average basal area.

TABLE 21.—Total height of southern white cedar trees in the dominant stand 1

	Site index							
Age (years)	20	30	40	50	• 60	.70		
			Total he	ight—feet		<u>.</u>		
20 25 30 35 35 35 40 45 50 55 60 65 70 75 80 85 90 95 100 100	$\begin{array}{c} 10.\ 2\\ 12.\ 5\\ 14.\ 4\\ 16.\ 0\\ 0\ 17.\ 4\\ 18.\ 8\\ 20.\ 0\\ 21.\ 1\\ 22.\ 0\\ 22.\ 8\\ 23.\ 6\\ 24.\ 3\\ 25.\ 0\\ 26.\ 5\\ 26.\ 0\\ 26.\ 5\\ 27.\ 0\\ \end{array}$	$\begin{array}{c} 15.5\\ 18.7\\ 21.5\\ 24.0\\ 26.3\\ 28.2\\ 30.0\\ 31.5\\ 33.0\\ 34.2\\ 35.5\\ 36.5\\ 37.5\\ 38.4\\ 39.2\\ 40.1\\ 41.5\\ \end{array}$	$\begin{array}{c} 20.8\\ 25.1\\ 28.8\\ 32.2\\ 35.0\\ 37.7\\ 40.0\\ 42.2\\ 44.1\\ 45.8\\ 47.4\\ 45.8\\ 50.1\\ 51.2\\ 52.3\\ 53.3\\ 53.3\\ 54.2\end{array}$	$\begin{array}{c} 25.9\\ 31.2\\ 35.8\\ 40.0\\ 43.7\\ 47.0\\ 50.0\\ 52.7\\ 55.2\\ 57.3\\ 59.2\\ 61.0\\ 62.6\\ 64.0\\ 65.4\\ 66.6\\ 67.7\end{array}$	$\begin{array}{c} 31.\ 0\\ 37.\ 6\\ 43.\ 2\\ 48.\ 2\\ 52.\ 6\\ 56.\ 5\\ 60.\ 0\\ 66.\ 2\\ 66.\ 2\\ 68.\ 7\\ 71.\ 1\\ 73.\ 2\\ 75.\ 2\\ 77.\ 0\\ 78.\ 6\\ 80.\ 0\\ 81.\ 3\end{array}$	36. 4 43. 9 50. 4 56. 9 61. 1 65. 9 70. 0 73. 8 80. 2 83. 0 83. 1 83. 1 83. 1 91. 1 93. 1 94. 1		

¹ The values in this table were read from the height-age curves in fig. 17. The 50-year values are site indices.

TABLE 22.—Average	diameter	breast hi	gh of al	l southern	white	cedar	trees	1	inch
and	more in di	ameter. b	u age an	d site-qual	itu clas	sses 1			
				T					

Site index							
Age (years)	20	30	40	50	60	70	
		Dia	meter brea	ast high—i	nches		
20	$\begin{array}{c} 0.9\\ 1.2\\ 1.5\\ 2.4\\ 2.7\\ 3.2\\ 3.7\\ 3.9\\ 4.6\\ 4.6\\ 4.7\\ \end{array}$	1.151.592.7043.37044.034.4914.9145.586.0	$\begin{array}{c} 1.49 \\ 1.94 \\ 2233 \\ 3.33 \\ 44.75 \\ 5.58 \\ 6.14 \\ 6.70 \\ 7.02 \\ 7.4 \end{array}$	$\begin{array}{c} 1.8\\ 2.4\\ 3.0\\ 3.6\\ 4.2\\ 4.8\\ 5.0\\ 6.5\\ 6.9\\ 7.3\\ 7.7\\ 8.0\\ 8.4\\ 8.71\\ 9.4 \end{array}$	$\begin{array}{c} 2.3\\ 3.1\\ 3.9\\ 4.7\\ 5.5\\ 6.3\\ 7.1\\ 7.8\\ 8.5\\ 9.0\\ 9.5\\ 10.0\\ 9.5\\ 10.0\\ 10.6\\ 11.1\\ 11.5\\ 12.0\\ 12.4 \end{array}$	$\begin{array}{c} 2,9\\ 3,9\\ 5,0\\ 6,0\\ 7,0\\ 8,0\\ 9,0\\ 10,0\\ 10,8\\ 11,6\\ 12,2\\ 12,9\\ 12,9\\ 13,5\\ 14,1\\ 14,7\\ 15,3\\ 15,8\\ 15,8\\ \end{array}$	

¹ Derived from total basal area per acre (Table 24) and total number of trees per acre (Table 23).

 TABLE 23.—Total number of southern white cedar trees per acre 1 inch and more in diameter breast high, by age and site-quality classes

	Site index						
Age (years)	20	30	40	50	60	70	
		Number of trees per acre					
20		$\begin{array}{c} 14,700\\ 10,500\\ 7,600\\ 5,800\\ 4,500\\ 3,100\\ 2,600\\ 2,000\\ 2,000\\ 1,850\\ 1,850\\ 1,700\\ 1,550\\ 1,450\\ 1,350\\ 1,270\\ 1,200\\ \end{array}$	$\begin{array}{c} 10,800\\ 7,600\\ 5,600\\ 4,500\\ 2,700\\ 2,250\\ 1,950\\ 1,950\\ 1,950\\ 1,350\\ 1,250\\ 1,150\\ 1,150\\ 1,075\\ 1,005\\ 950\\ 900 \end{array}$	$\begin{array}{c} 7,400\\ 5,100\\ 3,850\\ 2,950\\ 2,300\\ 1,900\\ 1,550\\ 1,330\\ 1,170\\ 1,050\\ 940\\ 860\\ 790\\ 740\\ 700\\ 660\\ 620\\ \end{array}$	$\begin{array}{c} 4,600\\ 3,300\\ 2,400\\ 1,860\\ 1,440\\ 1,170\\ 970\\ 830\\ 740\\ 660\\ 580\\ 540\\ 580\\ 540\\ 500\\ 460\\ 430\\ 420\\ 385\end{array}$	2, 800 2, 000 1, 456 1, 122 877 722 588 500 433 338 350 333 300 288 260 265 250	

.

				Site index							
Age (years)		20 _	30	40	50	60	70				
· · ·		-	Basal	l area—squ	are feet pe	r acre					
20 25 25 25 25 30 35 35 50 55 55 60 65 70 75 75 80 80 90 95 100 100 100 100 100 100 100 10		$\begin{array}{c} 83\\ 100\\ 113\\ 124\\ 134\\ 141\\ 148\\ 152\\ 156\\ 159\\ 162\\ 164\\ 166\\ 168\\ 169\\ 170\\ 172\\ \end{array}$	$\begin{array}{c} 108\\ 129\\ 146\\ 159\\ 170\\ 180\\ 188\\ 194\\ 198\\ 202\\ 206\\ 209\\ 213\\ 216\\ 219\\ 221\\ 223\\ \end{array}$	$\begin{array}{c} 126\\ 150\\ 170\\ 185\\ 200\\ 210\\ 228\\ 234\\ 239\\ 242\\ 246\\ 250\\ 253\\ 256\\ 259\\ 261\\ \end{array}$	140 167 188 205 220 233 243 262 264 269 274 279 281 284 287 281 284 287 290	148 175 198 217 232 245 256 265 272 279 284 289 204 289 204 297 300 302 304	151 180 203 223 254 267 275 275 283 290 295 300 304 308 311 314 317				

TABLE 24.—Basal area per acre of all southern white cedar trees 1 inch and more in diameter breast high, by age and site-quality classes ¹

¹ By basal area is meant the sum of the cross-sectional areas in square feet of all trees on an average acre measured at breast height. Since it is computed from the diameters at breast height it includes both wood and bark. Basal area has been found relatively insensitive to variations in stocking.

TABLE	25.—Yield	of well-stocked	even-aged sta	ands of southern	white cedar in cubic
	feet of	peeled wood per	· acre, by age	e and site-quality	y classes

•	Site index							
Age (years)	20	30	40	50	60	70		
	v	olume of p	eeled woo	1 1—cubic	feet per ac	re		
20	$\begin{array}{c} 420\\ 600\\ 780\\ 930\\ 1,080\\ 1,230\\ 1,370\\ 1,500\\ 1,600\\ 1,700\\ 1,900\\ 1,900\\ 1,950\\ 2,000\\ 2,050\\ 2,150\end{array}$	$\begin{array}{c} 820\\ 1,170\\ 1,500\\ 2,100\\ 2,350\\ 2,600\\ 2,850\\ 3,100\\ 3,300\\ 3,450\\ 3,600\\ 3,550\\ 3,950\\ 4,050\\ 4,100\\ \end{array}$	$\begin{array}{c} 1,200\\ 1,700\\ 2,200\\ 2,650\\ 3,500\\ 3,500\\ 3,850\\ 4,450\\ 4,450\\ 4,700\\ 4,950\\ 5,200\\ 5,400\\ 5,600\\ 5,800\\ 5,900\\ 6,000\end{array}$	$\begin{array}{c} 1, 600\\ 2, 300\\ 2, 950\\ 3, 550\\ 4, 050\\ 4, 550\\ 5, 050\\ 5, 550\\ 6, 000\\ 6, 400\\ 6, 700\\ 7, 000\\ 7, 250\\ 7, 500\\ 7, 700\\ 7, 900\\ 8, 050\\ \end{array}$	$\begin{array}{c} 2,050\\ 2,850\\ 3,650\\ 4,350\\ 5,050\\ 5,750\\ 6,400\\ 7,500\\ 7,900\\ 8,300\\ 8,650\\ 9,000\\ 9,600\\ 9,900\\ 10,100\\ \end{array}$	$\begin{array}{c} 2,400\\ 3,400\\ 4,300\\ 5,200\\ 6,650\\ 6,850\\ 7,600\\ 8,300\\ 8,900\\ 9,450\\ 10,000\\ 10,500\\ 10,500\\ 11,200\\ 11,200\\ 11,800\\ 12,000\\ \end{array}$		

¹ Volume of entire stem without bark, including stump and top.

	Site index							
Age (years)	20	30	40	50	60	70		
	Bark volume—percentage of total peeled volume							
20	$\begin{array}{c} 27.8\\ 27.1\\ 26.2\\ 25.5\\ 24.7\\ 23.9\\ 23.2\\ 22.7\\ 22.3\\ 21.9\\ 21.5\\ 21.9\\ 20.9\\ 20.7\\ 20.4\\ 20.3\\ 20.2\end{array}$	$\begin{array}{c} 27.\ 2\\ 26.\ 2\\ 25.\ 3\\ 24.\ 2\\ 23.\ 3\\ 22.\ 6\\ 21.\ 9\\ 21.\ 5\\ 21.\ 0\\ 20.\ 7\\ 20.\ 3\\ 19.\ 9\\ 19.\ 7\\ 19.\ 4\\ 19.\ 2\\ 18.\ 9\\ 18.\ 8\end{array}$	$\begin{array}{c} 26.5\\ 25.3\\ 24.2\\ 23.0\\ 22.1\\ 21.3\\ 20.7\\ 20.2\\ 19.7\\ 19.3\\ 18.9\\ 18.7\\ 18.4\\ 18.2\\ 18.0\\ 17.8\\ 17.6\\ \end{array}$	$\begin{array}{c} 25.5\\ 24.2\\ 22.8\\ 21.7\\ 20.8\\ 20.0\\ 19.4\\ 18.8\\ 18.3\\ 18.0\\ 17.7\\ 17.4\\ 17.2\\ 16.9\\ 16.7\\ 16.5\\ 16.3\\ \end{array}$	$\begin{array}{c} 24.2\\ 22.5\\ 21.2\\ 20.2\\ 19.3\\ 18.4\\ 17.8\\ 17.3\\ 16.8\\ 16.5\\ 16.2\\ 16.0\\ 15.7\\ 15.4\\ 15.2\\ 15.0\\ 14.8 \end{array}$	$\begin{array}{c} 23.1\\ 21.2\\ 19.8\\ 18.7\\ 17.2\\ 16.6\\ 16.6\\ 15.6\\ 15.6\\ 14.9\\ 14.6\\ 14.4\\ 14.2\\ 13.9\\ 13.7\\ 13.5\end{array}$		

TABLE 26.—Total bark volume in percentage of total peeled volume for all southern white cedar trees 1 inch and more in diameter, by age and site-quality classes ¹

¹ This table gives bark volume of entire stem, including stump and top, in percentage of the peeled volume of the entire stem.

 TABLE 27.—Average diameter breast high of all southern white cedar trees 5 inches and more in diameter, by age and site-quality classes

	Site index							
Age (years)	20	30	40	50	60	70		
		Diameter breast high—inches						
20	$\begin{array}{c} 4.7\\ 4.8\\ 4.9\\ 5.0\\ 5.1\\ 5.2\\ 5.3\\ 5.4\\ 5.5\\ 5.5\\ 5.6\end{array}$	$\begin{array}{c} 4.6\\ 4.8\\ 5.0\\ 5.2\\ 5.4\\ 5.5\\ 5.7\\ 5.8\\ 6.0\\ 6.1\\ 6.3\\ 6.4\\ 6.5\\ 6.7\\ \end{array}$	$\begin{array}{c} & 4.7 \\ & 4.9 \\ & 5.2 \\ & 5.4 \\ & 5.7 \\ & 5.9 \\ & 6.1 \\ & 6.3 \\ & 6.6 \\ & 6.8 \\ & 7.0 \\ & 7.2 \\ & 7.4 \\ & 7.6 \\ & 7.8 \end{array}$	4.7 5.0 5.3 5.7 6.0 6.3 6.7 7.0 7.4 7.7 8.0 8.3 8.6 8.3 8.6 8.9 9.2 9.5	$\begin{array}{c} 4.6\\ 5.0\\ 5.4\\ 5.9\\ 6.4\\ 6.9\\ 7.5\\ 8.0\\ 9.1\\ 9.6\\ 8.6\\ 9.1\\ 10.6\\ 11.0\\ 11.4\\ 11.8\\ 12.1 \end{array}$	$\begin{array}{c} 5.\ 0\\ 5.\ 6\\ 6.\ 2\\ 6.\ 9\\ 7.\ 7\\ 8.\ 5\\ 9.\ 4\\ 10.\ 2\\ 11.\ 0\\ 11.\ 8\\ 12.\ 5\\ 13.\ 1\\ 13.\ 8\\ 14.\ 3\\ 14.\ 9\\ 15.\ 4\\ 15.\ 9\end{array}$		

 TABLE 28.—Total number per acre of southern white cedar trees 5 inches and more in diameter, by age and site-quality classes

		· · · · ·	Site index						
	Age (years)		20	30	40	50	60	70	
				N	umber of t	rées pèr ac	re	· · · · · · · · ·	
20			80 161 259 355 446 506 559 620 670 670 702 726 735		97 215 442 648 876 935 938 910 888 862 838 810 810 788 810 788 762	$\begin{array}{c} 95\\ 308\\ 575\\ 759\\ 892\\ 946\\ 931\\ 906\\ 842\\ 802\\ 762\\ 725\\ 684\\ 642\\ 614\\ 584\\ \end{array}$	$\begin{array}{c} 58\\ 330\\ 654\\ 834\\ 900\\ 866\\ 795\\ 740\\ 663\\ 612\\ 555\\ 516\\ 4177\\ 446\\ 419\\ 397\\ 378\end{array}$	$\begin{array}{c} 213\\ 553\\ 768\\ 784\\ 705\\ 634\\ 545\\ 478\\ 427\\ 381\\ 343\\ 320\\ 292\\ 277\\ 258\\ 243\\ 229\end{array}$	

TABLE 29.—Basal area per acre of all southern white cedar trees 5 inches and more in diameter, by age and site-quality classes 1

			Site ir	ndex	. •	
Age (years)	20	30	40	50	60	70
		Basal	area—squa	re feet per	acre	
20	9.6 20.3 33.9 48.0 63.3 75.3 86.1 96.8 106.7 115.8 121.0 125.6	7. 2 23. 3 40. 1 68. 1 90. 2 109. 9 128. 3 145. 2 160. 9 172. 5 183. 0 190. 5 196. 2 201. 4	$\begin{array}{c} 11.6\\ 28.1\\ 65.2\\ 104.0\\ 139.7\\ 166.4\\ 189.5\\ 205.5\\ 214.9\\ 223.9\\ 232.2\\ 238.6\\ 244.2\\ 248.6\\ 252.1 \end{array}$	$\begin{array}{c} 11.\ 4\\ 41.\ 9\\ 88.\ 2\\ 134.\ 2\\ 174.\ 8\\ 206.\ 6\\ 227.\ 6\\ 241.\ 9\\ 251.\ 1\\ 259.\ 0\\ 266.\ 1\\ 272.\ 6\\ 275.\ 7\\ 279.\ 7\\ 279.\ 7\\ 283.\ 8\\ 287.\ 1\end{array}$	$\begin{array}{c} 6.7\\ 44.4\\ 104.0\\ 158.4\\ 199.5\\ 226.1\\ 245.2\\ 258.1\\ 267.1\\ 245.2\\ 258.1\\ 287.3\\ 292.5\\ 295.8\\ 298.8\\ 298.8\\ 301.1\\ 303.4\\ \end{array}$	29. 0 94. 5 160. 0 201. 4 229. 0 248. 2 263. 8 273. 4 281. 6 289. 1 294. 4 299. 4 303. 7 310. 7 310. 7 313. 7

¹ Basal area is measured at breast height.

60

		Site index					
Age (years)	20	30	40	50	60	70	
		Yield of	wood and l	oark—cord	s per acre	•	
20. 25. 30. 35. 40. 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95. 100.	1.0 2.6 4.1 5.6 7.1 8.5 9.8 11.0 12.2 13.3 - 14.3 15.1	$\begin{array}{c} 1.2\\ 3.9\\ 6.9\\ 10.2\\ 13.9\\ 17.3\\ 20.6\\ 23.7\\ 26.7\\ 29.5\\ 32.2\\ 34.4\\ 36.5\\ 38.2 \end{array}$	$\begin{array}{c} 2.4\\ 6.7\\ 11.8\\ 17.5\\ 23.6\\ 29.4\\ 34.9\\ 40.0\\ 44.6\\ 48.8\\ 52.8\\ 56.1\\ 59.1\\ 61.6\\ 63.8\end{array}$	$\begin{array}{c} 2.8\\ 8.9\\ 16.0\\ 24.0\\ 32.7\\ 41.8\\ 50.5\\ 58.1\\ 64.4\\ 69.5\\ 73.8\\ 77.4\\ 80.5\\ 83.2\\ 85.6\\ 87.8\end{array}$	$\begin{array}{c} 1.4\\ 8.9\\ 19.2\\ 31.0\\ 43.5\\ 55.3\\ 65.1\\ 73.0\\ 79.5\\ 85.2\\ 90.2\\ 94.5\\ 98.5\\ 20.2\\ 94.5\\ 101.9\\ 105.0\\ 108.0\\ 110.7\end{array}$	$\begin{array}{c} 5.9\\ 18.7\\ 33.2\\ 48.0\\ 61.8\\ 73.2\\ 82.7\\ 90.7\\ 97.5\\ 103.8\\ 109.5\\ 114.4\\ 118.7\\ 122.4\\ 125.6\\ 128.7\\ 131.5\end{array}$	

TABLE 30.—Yield of well-stocked even-aged stands of southern white cedar trees5 inches and more in diameter, in cords per acre, by age and site-quality classes 1

÷.

¹ Volume includes stem and bark between 1-foot stump and an inside bark top diameter of 4 inches.

 TABLE 31.—Cubic feet of solid wood per stacked cord of wood with bark for all trees

 5 inches and more in diameter, by age and site-quality classes

	Site index							
Age (years)	20	30	40	50	60	70		
		Cubic feet	of solid woo	od per cord	with bark			
20	73. 8 74. 7 75. 0 75. 4 76. 0 76. 4 76. 7 77. 0 77. 3 77. 6 77. 7 77. 8	73. 5 74. 7 75. 0 75. 8 76. 4 76. 8 77. 3 77. 7 78. 2 78. 5 78. 9 79. 2 79. 4 79. 7	$\begin{array}{c} 73.8\\74.6\\75.6\\76.6\\77.3\\77.8\\78.5\\79.1\\79.4\\79.8\\80.2\\80.5\\80.8\\81.0\\81.3\end{array}$	73. 8 75. 0 76. 2 77. 2 78. 0 78. 9 79. 7 80. 3 80. 7 81. 2 81. 5 81. 5 81. 8 82. 2 82. 4 82. 4 83. 0	$\begin{array}{c} 73.5\\75.2\\76.7\\77.8\\79.1\\80.1\\80.9\\81.7\\82.3\\82.7\\83.1\\83.4\\83.8\\84.2\\84.3\\84.6\\84.8\end{array}$	$\begin{array}{c} 74.\\ 76.\\ 78.\\ 80.\\ 81.\\ 82.\\ 83.\\ 84.\\ 84.\\ 84.\\ 84.\\ 85.\\ 85.\\ 85.\\ 85.\\ 86.\\ 86.\\ 86.\\ 86.\\ 86. \end{array}$		

 TABLE 32.—Average diameter breast high of all southern white cedar trees 8 inches
 and more in diameter, by age and site-quality classes

. • •					Site i	ndex	•••••	÷.
	Age (years)		20	30	40	50	60	70
				Dia	meter brea	st high—i	nches	
25			7.6 7.6 7.6 7.6 7.7 7.7 7.7 7.7	 7.6 7.6 7.7 7.7 7.8 7.9 7.9 7.9 8.0 8.0 8.1	7.6 7.7 7.7 7.8 8.0 8.1 8.3 8.4 8.6 8.7 8.9 9.0	7.6 7.7 7.8 8.0 8.2 8.4 8.7 9.0 9.3 9.6 9.8 9.8 9.9 10.1 10.3	$\begin{array}{c} 7.7\\ 7.9\\ 8.1\\ 8.8\\ 9.2\\ 9.6\\ 10.1\\ 10.5\\ 10.9\\ 11.3\\ 11.6\\ 12.0\\ 12.3\\ 12.6\end{array}$	$\begin{array}{c} 7.5\\ 8.1\\ 9.6\\ 9.6\\ 10.3\\ 11.1\\ 11.8\\ 12.4\\ 13.6\\ 14.6\\ 14.6\\ 15.1\\ 15.6\\ 16.1\end{array}$

TABLE 33.—Total number per acre of southern white cedar trees 8 inches and morein diameter, by age and site-quality classes

			Site	index		
Age (years)	20	30	40	50	60	70
	-	N	umber of t	rees per ac	re	• •
25	$\begin{array}{c} & & \\$		$\begin{array}{c} 11\\ 34\\ 71\\ 119\\ 168\\ 213\\ 250\\ 288\\ 322\\ 353\\ 365\\ 378\\ \end{array}$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 13\\ 65\\ 165\\ 269\\ 359\\ 407\\ 430\\ 422\\ 414\\ 404\\ 390\\ 382\\ 366\\ 354\\ 343\\ \end{array}$	$\begin{array}{c}1\\8\\20\\31\\37\\38\\37\\34\\33\\30\\29\\27\\26\\24\\23\\22\end{array}$

62

 TABLE 34.—Basal area per acre of all southern white cedar trees 8 inches and more in diameter, by age and site-quality classes

	Site index						
Age (years)	20	30	40	50	60	70	
		Basal	area—squa	re feet per	r acre		
25	 		$\begin{array}{c} 3.6\\ 10.8\\ 23.0\\ 39.8\\ 58.0\\ 76.2\\ 93.5\\ 111.2\\ 128.5\\ 145.9\\ 158.0\\ 168.1 \end{array}$	$\begin{array}{c} 2.0\\ 8.0\\ 27.5\\ 56.4\\ 90.2\\ 120.7\\ 145.2\\ 168.9\\ 190.4\\ 205.6\\ 220.3\\ 231.2\\ 244.0\\ 252.3\end{array}$	$\begin{array}{c} 4.2\\ 21.9\\ 58.9\\ 103.6\\ 151.0\\ 187.9\\ 216.2\\ 234.6\\ 249.1\\ 262.0\\ 272.8\\ 280.7\\ 286.5\\ 291.7\\ 295.5 \end{array}$	$\begin{array}{c} 3.8\\ 31.3\\ 79.8\\ 136.8\\ 187.2\\ 224.5\\ 2248.3\\ 248.3\\ 264.6\\ 277.8\\ 285.9\\ 294.0\\ 298.5\\ 304.0\\ 307.9\\ 311.2\\ 314.5\end{array}$	

TABLE 35.—Yield of well-stocked even-aged stands of southern white cedar trees 8 inches and more in diameter in board feet, international (½-inch) log rule, by age and site-quality classes 1

		Site index							
	Age (years)	20	30	40	50	60	70		
	ng teoreta de la constante de l Constante de la constante de la	***	Yi	eldboard	feet per a	cre			
20		25 105 200 305 420 545 685 840 1,000 1,170 1,350	$\begin{array}{c} & 40 \\ 165 \\ 350 \\ 650 \\ 1,000 \\ 1,400 \\ 1,950 \\ 2,550 \\ 3,250 \\ 4,050 \\ 4,850 \\ 5,700 \\ 6,550 \end{array}$	105 405 910 1, 620 2, 530 3, 900 5, 450 7, 050 8, 750 8, 750 10, 500 12, 300 14, 100 15, 900 7, 800	205 710 1, 540 3, 000 5, 500 8, 800 12, 100 15, 300 18, 400 21, 500 24, 300 27, 000 29, 500 32, 000 34, 400	$\begin{array}{c} 255\\ 1,060\\ 2,660\\ 5,910\\ 10,700\\ 16,600\\ 22,300\\ 27,500\\ 31,900\\ 35,700\\ 35,700\\ 35,700\\ 39,300\\ 42,700\\ 42,700\\ 42,700\\ 42,700\\ 51,700\\ 54,20$	$\begin{array}{c} 120\\ 1,000\\ 3,440\\ 8,320\\ 15,300\\ 23,000\\ 30,300\\ 37,000\\ 42,900\\ 48,200\\ 53,100\\ 57,300\\ 60,800\\ 60,800\\ 63,900\\ 66,700\\ 66,700\\ 69,300\\ 71,50$		

1 Stump height 1 foot; top diameter inside bark 6 inches; for 1/4 inch saw kerf, deduct 9.5 per cent.

-

.

TABLE 36.—Average diameter breast high of all southern white cedar trees in the dominant stand, by age and site-quality classes

-

				· · · · ·	Site i	ndex	n en	
	Age (years)		20	30	40	50	60	70
•		ł .		Diar	neter breas	st high—in	ches	·
10			$\begin{array}{c} 1.6\\ 2.0\\ 2.4\\ 3.1\\ 3.4\\ 3.7\\ 4.0\\ 4.3\\ 4.5\\ 4.7\\ 4.9\\ 5.1\\ 5.3\\ 5.4\\ 5.6\end{array}$	$1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.4 \\ 3.9 \\ 4.3 \\ 4.5 \\ 6.5 \\ 5.3 \\ 5.6 \\ 5.8 \\ 6.1 \\ 6.3 \\ 6.6 \\ 6.8 \\ 7.0 \\ 100 $	$\begin{array}{c} 1.9\\ 2.5\\ 3.1\\ 3.7\\ 4.2\\ 4.8\\ 5.2\\ 5.7\\ 6.1\\ 6.5\\ 6.9\\ 7.2\\ 7.5\\ 7.8\\ 8.0\\ 8.3\\ 8.5\end{array}$	$\begin{array}{c} 2.4\\ 3.2\\ 3.9\\ 4.6\\ 5.2\\ 5.9\\ 6.5\\ 7.0\\ 7.5\\ 8.0\\ 8.5\\ 8.9\\ 9.3\\ 9.6\\ 10.0\\ 10.3\\ 10.6\end{array}$	$\begin{array}{c} 3.0\\ 3.9\\ 4.9\\ 5.8\\ 6.6\\ 7.4\\ 8.2\\ 8.8\\ 9.5\\ 10.2\\ 10.7\\ 11.3\\ 11.8\\ 12.3\\ 12.7\\ 13.2\\ 13.6\end{array}$	$\begin{array}{c} 3.7\\ 4.6\\ 6.1\\ 7.2\\ 8.4\\ 9.1\\ 10.4\\ 11.4\\ 12.4\\ 13.5\\ 14.0\\ 14.8\\ 15.4\\ 16.\\ 16.\\ 16.\\ 17.\\ 17.4\\ 17.$

TABLE 37.—Total number of southern white cedar trees per acre in the dominant stand, by age and site-quality classes

				Site index							
	Age (year	s)		20	30	40	50	60	70		
					Nu	mber of tre	es per acr	e 			
20				$\begin{array}{c} 5,290\\ 3,860\\ 3,030\\ 2,350\\ 1,970\\ 1,780\\ 1,550\\ 1,360\\ 1,200\\ 1,10\\ 1,040\\ 1,040\\ 980\\ 925\\ 858\\ 837\\ 790\\ \end{array}$	6, 500 4, 410 3, 140 2, 470 2, 060 1, 660 1, 440 1, 300 1, 120 1, 020 938 876 815 788 720 685 660	$\begin{array}{c} \textbf{4, 750} \\ \textbf{3, 300} \\ \textbf{2, 400} \\ \textbf{1, 880} \\ \textbf{1, 570} \\ \textbf{1, 300} \\ \textbf{1, 160} \\ \textbf{994} \\ \textbf{902} \\ \textbf{820} \\ \textbf{734} \\ \textbf{685} \\ \textbf{646} \\ \textbf{610} \\ \textbf{589} \\ \textbf{553} \\ \textbf{530} \end{array}$	$\begin{array}{c} \textbf{3, 340} \\ \textbf{2, 250} \\ \textbf{1, 730} \\ \textbf{1, 370} \\ \textbf{1, 370} \\ \textbf{1, 130} \\ \textbf{956} \\ \textbf{823} \\ \textbf{749} \\ \textbf{674} \\ \textbf{604} \\ \textbf{549} \\ \textbf{510} \\ \textbf{481} \\ \textbf{457} \\ \textbf{428} \\ \textbf{409} \\ \textbf{388} \end{array}$	$\begin{array}{c} 2,270\\ 1,600\\ 1,160\\ 923\\ 770\\ 655\\ 563\\ 510\\ 451\\ 407\\ 377\\ 342\\ 322\\ 322\\ 300\\ 285\\ 267\\ 254 \end{array}$	$\begin{array}{c} 1,530\\ 1,060\\ 783\\ 626\\ 502\\ 420\\ 365\\ 317\\ 281\\ 256\\ 232\\ 213\\ 197\\ 186\\ 174\\ 164\\ 155\\ \end{array}$		

SOUTHERN WHITE CEDAR

			Site i	ndex		
Age (years)	20	30	40	50	60	70
		Basal	areasqu	are feet per	acre	· · · ·
20	74.1 84.2 92.8 100.5 112.0 115.5 118.9 121.8 124.4 126.3 128.2 130.0 131.3 132.3 134.0	79.6 96.1 109.4 119.6 130.0 136.8 143.8 143.8 143.8 143.8 143.8 152.7 156.3 160.3 160.3 166.3 166.3 166.8 170.2 173.2 175.0 177.1	93. 5 112. 4 128. 0 140. 2 152. 6 161. 5 170. 3 177. 6 183. 2 188. 6 191. 7 195. 6 199. 5 202. 7 205. 6 208. 8 211. 1	$\begin{array}{c} 104.\ 7\\ 125.\ 8\\ 142.\ 9\\ 157.\ 2\\ 170.\ 1\\ 181.\ 7\\ 191.\ 5\\ 200.\ 1\\ 206.\ 9\\ 211.\ 7\\ 117.\ 1\\ 222.\ 2\\ 227.\ 1\\ 2227.\ 1\\ 2227.\ 1\\ 2229.\ 9\\ 236.\ 2\\ 239.\ 8\end{array}$	$\begin{array}{c} 111.3\\ 133.2\\ 152.5\\ 169.0\\ 195.5\\ 206.1\\ 215.2\\ 222.8\\ 229.3\\ 235.2\\ 239.9\\ 244.9\\ 248.6\\ 251.4\\ 253.7\\ 235.7\end{array}$	114. (138. (158.) 177. (206. (219.) 228. (226.) 226. (243. (243.) 247. (257.) 257. (261.) 264. (264.) 267. (270.)

TABLE 38.—Basal area per acre of all southern white cedar trees in the dominant stand, by age and site-quality classes

TABLE 39.—Yield of the dominant stand of fully stocked southern white cedar in board feet, international (%-inch) log rule, by age and site-quality classes ¹

			Site index						
	Age (years)		20	30	40	50	60	70	
	•			Yi	eld—board	feet per a	cre		
20 25 30 35 40 45 50 60 65 70 75 80 85 90 95 100				20 120 340 600 960 1, 380 1, 960 2, 630 3, 260 3, 260 4, 240 5, 870 5, 870 6, 680	55 340 805 1,620 2,580 3,870 5,540 7,180 9,000 10,700 12,600 14,600 15,800 17,000	$\begin{array}{c} 145\\ 640\\ 1,540\\ 3,050\\ 5,500\\ 12,500\\ 15,500\\ 15,500\\ 21,400\\ 23,600\\ 26,200\\ 28,100\\ 30,400\\ 32,000\\ \end{array}$	$\begin{array}{c} 200\\ 985\\ 2,700\\ 10,800\\ 16,600\\ 21,900\\ 26,600\\ 30,000\\ 33,400\\ 36,500\\ 39,800\\ 42,600\\ 44,900\\ 47,500\\ 49,300 \end{array}$	$\begin{array}{c} 95\\930\\3,440\\8,480\\25,500\\28,900\\28,900\\35,000\\44,500\\44,500\\44,500\\44,500\\55,400\\55,400\\55,400\\55,400\\60,400\\60,400\\60,400\\62,500\\64,2$	

1 Stump height, 1 foot; top diameter inside of bark, 6 inches; for 1/4-inch saw kerf, deduct 9.5 per cent.

THE SOUTHERN WHITE CEDAR ALIGNMENT-CHART STAND TABLE

For solving many of the problems of forest management, a yield table is insufficient unless it is accompanied by an adequate stand table. When maximum or minimum size of, tree enters into calculations, as it does when dealing with piece products, or establishing a cutting limit, the yield-table values of average diameter growth and number of trees are inadequate; the number of trees in e ach diameter class or group of diameter classes must also be known. A stand table gives such information.

An alignment-chart stand table for southern white cedar is -presented in Figure 19. The known values are the average diameter of the stand (taken from the yield table) and the diameter limits which are involved in the problem. For instance, if the average diameter of the stand is 15 inches and the number of

trees in and above the 20-inch d.b. h. class is desired, a straight line is passed through 19.5 inches on the diameter limit scale (since the 20-inch class includes trees above 19.5 inches) and 15 inches on the average diameter scale, reading 10 per cent on the number-of-trees scale. Since the number is expressed in per-

centage of the total number, it must be multiplied by the total number as read from the yield table.

If the number of trees in any one d.b.h. class is desired, two readings will be necessary, for the upper and lower limits of the class, the difference between them being the desired result. The number in the 20-inch class will thus be the difference between the readings for its limits, 19.5 and 20.5 inches. These readings are 10 per cent and 6 per cent, respectively; therefore 4 per cent of the total number of trees are in the 20-inch class.

SOUTHERN WHITE CEDAR

VOLUME TABLES²

The volume tables for southern white cedar which follow (Tables 40 to 44) indicate the average volume in cubic feet, cords, and board feet of trees having the total heights and breast-high diameters given. Tables 40, 41, and 44 are particularly useful in determining the merchantable contents of trees. Tables 42 and 43, which give the total volumes of the entire tree, stump, stem, and top, peeled and unpeeled, are intended primarily for use in scientific studies where a measure of the entire wood volume of the tree is desired. Tables 45, 46, and 47 supplement the regular volume tables.

The field and office methods used in the preparation of the volume tables are substantially those recommended as standard by a joint committee from the Society of American Foresters, the Association of State Foresters, and the United States Forest Service (2). Since the use of the international log rule (1/8-inch saw kerf) has been recommended by this joint committee as standard for second growth board-foot yield tables, it is used in the present study. This log rule is preferable to other rules because it is fundamentally sound in derivation and indicates more closely than any other the amount of material which can actually be sawed from logs of different sizes. For these reasons it is far superior to the Doyle rule, in common use in many localities. The yields of well-stocked stands shown in Table 24, which were determined by the international log rule, would have been from 40 to 70 per cent less had they been computed by means of the Doyle rule, because this rule greatly understates the amount of material contained in small trees. The greatest difference in yield as measured by the Doyle and international rules is naturally found in dense stands composed of many small trees to the acre, such as occur on the poorer sites.

			Total he	eight of t	ree—feet	i		
Diameter breast high (inches)	40	50	60	70	80 -	90	100	Basis (trees)
			Volui	ne—boar	d feet		,	
3	15	1 25	30	40	45	55	1	
9	25	35	45	55	65	80		40
10		45	60	75	90	105		4
11	- 40	60	75	95	115	135		1. 8
12	- 50	1 75	95	120	140	165		4
13	- 65	90	115	140	170	200	Į	20
[4	- 75	110	140	170	200	235		
16		150	190	200	200	270	355	-
17		170	220	265	310	355	405	24
18		195	250	300	350	405	455	1
19			280	340	395	455	510	
20			320	380	445	510	570	1
21			355	425	495	565	635	
22			395	475	550	625	700	1 2
23				520	605	690	775	[
				565	660	750	850	
Basis	- 4	39	36	76	45	23	4	223

TABLE 40.—Merchantable volume in board feet of southern white cedar of different diameters and heights scaled by the international log rule, ½-inch kerf a

^c Top diameter, 6 inches; stump height, 1 foot; compiled by frustum form factor method. Aggregate check: Table 0.5 per cent below basic data. Basic trees: Virginia and North Carolina, 165; New Jersey, 40; Florida, 22. Block indicates extent of basic data.

² These tables were prepared by R. M. Brown from field data collected by C. F. Korstian in cooperation with the State foresters of North Carolina, Virginia, and New Jersey.

Diameter			r.	Fotal hei	ght of tre	ee—feet					Factor
breas [†] high (inches)	20	30	40	50	60	70	80	90	100	Basis (trees)	to 6-
			Р	eeled vol	ume—cu	bic feet	•				
·	0.6	0.9	1.3	1.6						12	
	1.3	1.9	2.5	3.2						46	
		3	4	5	6	7				4	
		4	5	. 7	8	9				51	0.68
		5	7	9	. 10	12	14	ļ		1	. 83
2		6	8	11	13	15	17			47	. 89
2			10	13	16	18	21			8	. 92
3			14	18	22	25	20	20	36	26	05
1			16	21	25	20	22	37	40	20	06
5				24	28	33	38	42	48	1	. 96
6				27	32	38	43	48	54	22	. 97
7 .				31	36	42	48	54	61	2	. 98
3				34	41	48	54	61	68	11	. 98
) -				- 38	45	53	60	68	76] 1	. 98
? -				42	50	58	67	75	84	10	. 99
					.55	65	/4	83	93	6	. 99
{ [-					61		81	91	101	. 2	. 99
					67	78	89	99	110	[99
		19		74	10	00 77	90	001	120		. 98
asis		14	14	14	00		40	23	4	294	

TABLE 41.—Merchantable peeled volume, in cubic feet, of southern white cedar of different diameters and heights 1

¹ Top diameter, 4 inches inside bark; stump height, 1 foot; compiled by form factor method, total cubic volume used as base. Aggregate check: Table 0.8 per cent below basic data. Basic trees: Virginia, North Carolina, 193; New Jersey, 79; Florida, 22. Block indicates extent of basic data. ² To convert to a 6-inch top diameter limit inside bark use factor in this column.

ł

Diamatan					Total hei	ght—feel	t.				
breast high (inches)	10	20	30	40	- 50	60	70	80	90	100	Basis (trees)
			·	Total p	eeled vol	ume—cu	bic feet	· · · · ·			
$\begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array}$		0.07 .21 .45 .78 1.2 1.7 	0.32 67 1.2 1.8 2.6 3.5 5 6 7	0,9 1,6 2,4 3,5 5 6 8 9 11 13 15 18	2 3 4 6 8 10 12 14 16 19 225 28 32 32 36 40 44	7 9 11 14 17 20 23 26 30 34 34 38 43 47 52	8 11 13 16 20 23 27 31 35 540 45 50 555 61	15 19 22 26 31 35 40 46 51 57 63 70	30 34 40 45 51 57 64 71 79	 	21 25 20 36 25 30 24 30 24 26 28 26 21 11 9 13 5 5 6 9 9
21 22 23 24 Basis	20	33	42	 44	77	58 63 69 75 38	67 74 80 87 77	77 84 92 99 45	87 95 103 112 25	96 105 114 124 4	3 3 2 405

TABLE 42.—Total peeled volume, in cubic feet, of southern white cedar of different diameters and heights ¹

¹ Volume includes stump, stem, and top. Block indicates extent of basic data. Basic trees: North Carolina, Virginia, 248; New Jersey, 135; Florida, 22. Compiled by form factor method. Average percentage deviation of tree volumes from table, 13.8 per cent. Aggregate deviation, tabular volume, 0.03 per cent low.

SOUTHERN WHITE CEDAR

. [. ·		<u> </u>	Fotal hei	ghtfeet	;				
Diameter breast high	10	20	30	40	50	60	70	8 0	90	100	Basis (trees)
(IIICIES)	· ·			Total ı	inpeeled	volume	-cubic fe	et			
	0.05	0.10	1								
	0.05	. 29	0.44								2
	. 29	. 59	. 88	1.2	<u> </u>						2
		$1.00 \\ 1.52$	1.5 2.3	2.0 3.0	$2.5 \\ 3.8$						
		2.14	3.2	4.3	5.4	7					8
			4.3	6 7	7 9	9 11	$10 \\ 13$				4
			7	9	11	14	16	18			
0			· ·8	11	14 17	17 20	19	22 27			
2				16	19	23	27	31	35	39 45	
3 1				18 21	$\frac{22}{26}$	31	36	41	40	51	
5				-,	29 33	35	41 46	47 52	52 59	58 66	
7					36	44	51	58	66	73	
8					$41 \\ 45$	49 54	57 63		73 81	81 90	
0		· · · · · · · · · · · · · · · · · · ·			50	59	69	79	89	99	
1							76 83	87 95	98 107	$108 \\ 119$	
3						77	90	103	116	129	[
1	20	33	42	44		· 84 · 38	98 77	45	120 25	4	4

$\begin{array}{c} \textbf{T_{ABLE} 43.} \\ - \textit{Total unpeeled volume, in cubic feet, of southern white cedar of different} \\ diameters and heights^{1} \end{array}$

¹ Volume includes stump, stem, top, and bark. Block indicates extent of basic data. Basic trees: North Carolina, Virginia, 248; New Jersey, 135; Florida, 22. Compiled by form factor method. Average percentage deviation of tree volumes from table, 12.5 per cent. Aggregate deviation, tabular volume, 1.07 per cent low.

-													
			To	otal hei	ight of	tree—1	eet	·		Conv fact	erting or—		
Diameter breast high (inches)	20	30	40	50	60	70	80	90	100	To a	То-	Bark (per cent)	Basis (trees)
	}		Vo	lume	standa	ard cor	ds ²			top	tal ³		
5	0.01	0.01	0.02	0.02	ar .		·				2.38	20	12
6	. 02	.03	.04	.04							1.27	19	46
7		.04	. 05	.06	0.08	0.09	1		_ _		1.25	18	4
8		. 05	.07	. 08	. 10	.12				0.687	1.22	17	51
9		.06	. 08	, 10	. 13	.15	0, 18			.835	1.18		
10	.	.07	.10	.13	15	. 18	. 21			020	1, 15	16	47
11			. 14	18	. 22	.26	29	0.33	0.37	. 939	1.10	15	40
13			1.17	.21	. 25	. 30	.34	• . 38	. 43	. 952	1.08	14	26
14			. 19	. 24	. 29	. 34	. 39	. 43	48	. 962	1.07	14	4
15		·		. 27	. 33	.38	.44	. 49	. 54	. 969	1.06	14	- 1
16	·			.31	.37	.43	.49	.00	.01	.975	1.00	10	22
17				. 34	.41	.48	60.]	.01	.08	. 980	1.00	10	11
18				.38	.40	. 55	. 67	. 08		. 984	1.05	13	1
20				.46	. 56	1.65	.74	.84	. 93	. 990	1.04	12	10
21					.61	.72	.82	. 92	1.03	. 992	1.03	12	6
22					. 68	.79	.90	1.01	1.12	. 993	1.03	11	2
23					.74	. 86	. 98	1.10	1.22	. 993	1.02	11	
24					. 81	.94	1.07	1.20	1.33	. 994	1.02	11	
Basis		12	21	74	38	17	40	23	4				294

TABLE 44.—Merchantable unpeeled volume, in standard cords, of southern white cedar of different diameters and heights¹

¹ Converted from a cubic foot volume table by number of cubic feet per standard cord for each d. b. h. class. Basic trees: Virginia, North Carolina, 193; New Jersey, 79; Florida, 22. Block indicates extent of basic data. ² Volume includes wood and bark; top diameter inside bark, 4 inches; stump height, 1 foot. A standard cord contains 128 cubic feet of stacked wood or the equivalent of a rick 4 feet by 4 feet by 8 feet. ³ Volume includes stump, stem, top, and bark.

TABLE 45.—Number of cubic feet per standard stacked cord of unpeeled southern white cedar cordwood bolts 1

Diameter breast high (inches)	Volume (wood and bark)	Volume (wood only)	Diameter breast high (inches)	Volume (wood and bark)	Volume (wood only)	Diameter breast high (inches)	Volume (wood and bark)	Volume (wood only)
1	Cubic feet 50 54 65 74 80 85 88 91	Cubic feet 31 36 47 58 65 71 75 79	9 10 11 12 13 14 15 16	Cubic feet 93 95 96 98 99 100 100 101	Cubic feet 81 83 84 85 86 87 88 88	17 18 19 20 21 22 23 24	$\begin{matrix} Cubic feet \\ 101 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \end{matrix}$	Cubic feet 88 89 89 89 89 89 89 89 89

¹ A standard cord contains 128 cubic feet of stacked wood, or the equivalent of a rick 4 by 4 by 8 feet. Weighted average length of bolt, 6.6 feet; diameter outside bark at one-half height above breast height taken as the diameter of the average bolt in tree. Based on measurement of 43.2 stacked cords by C. F. Korstian and Alfred Akerman in Pasquotank County, N. C., and C. F. Korstian and A. D. LaMonte in Atlantic County, N. J.

TABLE 46.—Number	of	southern	white	cedar	trees	per	standard	cord,	including
		ent	ire ster	n with	bark				

	-				Fotal hei	ght-fee	t.				
Diameter breast high (inches)	10	20	30	40	50	60	70	80	90	100	Basis (trees)
			ľ	umber (of trees p	er stand	ard cord	1			
1	1,000	500									21
2	360	186	123	54			*******				25 20
4		74	49 35	37 27	$\frac{30}{21}$						36 25
6		39.7	26.6	19.8	15.7	10.0	00				30
7 8			20.5 16.5	$15.4 \\ 12.5$	12.4 9.9	10. 2 8. 3	8.8 7.1				30
9 10			13.7 11.4	$\begin{array}{c} 10.2\\ 8.6\end{array}$	8.2 6.8	6.8 5.7	5.8 4.9	5.1 4.3			24 26
11 12				7.3	5.8 5.1	4.8 4.2	4.2 3.6	3.6 3.2	2.8	2.5	28 26 21
13				5.5 4.9	4.4 3.9	0.1 3.2	3. 2 2. 8	2.0	2.2 1.0	1.9	11
15					3.4 3.1	2.9	2. 5 2. 2	1.9	1.9	1.7 1.5	13
17					2.8 2.5	$\begin{array}{c} 2.3\\ 2.1 \end{array}$	$\frac{2.0}{1.8}$	1.7 1.6	1.5	1.4 1.2	6
19					2.3 2.1	1.9 1.7	$\begin{array}{c} 1.6\\ 1.5\end{array}$	1.4 1.3	1.3 1.1	1.1 1.0	8
21 22						$1.6 \\ 1.4$	$\begin{array}{c} 1.3\\ 1.2 \end{array}$	$\begin{array}{c} 1.2\\ 1.1 \end{array}$	1.0 .95	.94 .86	3 3
23 24						$\begin{array}{c} 1.3\\ 1.2 \end{array}$	$1.1 \\ 1.04$. 99 . 91	$.88 \\ .81$. 79 . 73	2
Trees	20	33	42	44	77	38	77	45	25	4	405

¹ A standard cord contains 128 cubic feet of stacked wood, or the equivalent of a rick 4 by 4 by 8 feet. Block indicates extent of basic observations. Compiled from Table 49, by a variable converting factor. Basic trees: North Carolina, Virginia, 248; New Jersey, 135; Florida, 22.

.

						and the second	
Diameter breast high (inches)	Bark volume percent- age of total volume	Diameter breast high (inches)	Bark volume percent- age of total volume	Diameter breast high (inches)	Bark volume percent- age of total volume	Diameter breast high (inches)	Bark volume percent- age of total volume
1 2 3 4 5 6	Per cent 35. 0 27. 3 23. 7 21. 2 19. 5 18. 4	7 8 9 10 11 12	$\begin{array}{c} Per \ cent \\ 17. \ 4 \\ 16. \ 7 \\ 16. \ 1 \\ 15. \ 5 \\ 15. \ 0 \\ 14. \ 5 \end{array}$	13 14 15 16 17 18	Per cent 14. 0 13. 7 13. 3 12. 9 12. 6 12. 3	19 20 21 22 23 24	Per cent 12.0 11.7 11.5 11.3 11.2 11.1

TABLE 47.—Volume of bark in proportion to total cubic volume of entire stem with bark 1

¹ Basic trees; North Carolina, Virginia, 248; New Jersey, 135; Florida, 22.

TAPER AND FORM TABLES

The taper or form of second-growth southern white cedar trees of different diameters and heights is shown in Table 48. This table gives for each 10-foot height and each 1-inch d . h. h. (measured outside bark), the diameter inside bark at 1-foot intervals from the ground up to 3 feet, at 4.5 feet (breast height), and at 10-foot intervals above the ground. The variation in the taper of individual trees is great. It is therefore unsafe to assume, for example, that, because a tree 12 inches d. b. h. will on the average yield a pole of specified length and upper diameter, a fully stocked stand containing twenty 12-inch trees will actually yield 20 such poles having the same specifications. When the number of specified size classes is small and the prices offered vary widely, the use of taper tables in conjunction with stand tables in estimating linear products is subject to serious error, which may in some cases amount to 50 per cent, approximately 50 per cent of the trees being above the average and 50 per cent below (8). When there is a large range of sizes and a tree which fails to make a pole of one class may fall in the next smaller class, the tables can be used with less error.

The form factors and form quotients given in Table 49 will also be useful in determining the form and contents of southern white cedar trees. The same is also true of the bark widths for different diameters given in Table 50.

	· · ·				He	ight al	ove gr	ound-	feet				
Diameter breast high (inches)	1	2	3	4.5	10	20	30	40	50	60	70	80	90
	· ·				Dian	ieter i	nside b	ark—i	nches			·	.t
2 3 4 5 6 7 8 9	$\begin{array}{c} 1.9\\ 2.9\\ 4.0\\ 5.1\\ 6.2\\ 7.3\\ 8.4\\ 9.6 \end{array}$	1.8 2.9 3.9 5.0 6.0 7.0 8.0 9.2	$1.8 \\ 2.8 \\ 3.8 \\ 4.8 \\ 5.8 \\ 6.8 \\ 7.7 \\ 8.8 $	$ \begin{array}{r} 1.8 \\ 2.8 \\ 3.7 \\ 4.6 \\ 5.6 \\ 5.6 \\ 7.4 \\ 8.4 \\ \end{array} $	$ \begin{array}{r} 1.6\\ 2.5\\ 3.2\\ 3.9\\ 4.6\\ 5.4\\ 6.1\\ 6.9 \end{array} $	$1.0 \\ 1.3 \\ 1.7 \\ 2.0 \\ 2.3 \\ 2.7 \\ 3.0 \\ 3.3 $							

 TABLE 48.—Diameters inside bark at intervals above the ground for southern white cedar trees of different diameters and heights a

 20 FOOD UP TES

^a Constructed by the multiple-correlation method. Aggregate deviation of basic data from a total cubic volume table constructed from these tables, 0.012 per cent. Basic trees: North Carolina, Virginia, 248; New Jersey, 135; Florida, 22.

³ These tables were prepared by R. M. Brown and L. H. Reineke from field data collected by C. F. Korstian in cooperation with the State foresters of North Carolina, Virginia, and New Jersey.

 TABLE 48.—Diameters inside bark at intervals above the ground for southern white cedar trees of different diameters and heights—Continued

Diameter breest high (inches) 1 2 3 4.5 10 20 30 40 50 60 70 80 60 Diameter inside bark—inches 3 2.9 2.9 2.8 2.4 2.4 2.7 1.6		Diameter breast high (inches)	1	2	3	4.5	10	20	30	40	50	60	70	80	00
Ingh (inches) 1 2 3 4.5 10 20 30 40 50 60 70 80 90 Diameter inside bark—inches a 2.9 2.9 2.8 2.6 2.4 2.2 1.5	3-4-5-	high (inches)	1	2	3	4.5	10 -	20	1 30	40	50	60	70	80	1 00
Diameter inside bark—inches 3 4 4 0 3.8 3.7 3.4 2.7 1.5					1		<u> </u>				00			00	50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 4 5						Dian	neter in	iside b	ark—ii	iches				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.		2.9	2.9	2.8	2.8	2.6	2.2	1.5						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0		4.0 5.1	3.9	3.8	3.7	3.4	$\begin{bmatrix} 2.7\\ 3.3 \end{bmatrix}$	1.7						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ŭ,		6.2	6.0	5.8	5.6	4.9	3.8	2.2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.		7.3 8.4	8.1	7.8	0.0	0. 1 6. 5	4.3	2.4						
11 117 111 107 102 28 86 66 3.4	· 9.	<u>.</u>	9.6 10.6	9.2	8.9	8.4	7.2	5.5	2.9						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	1	11.7	11.1	10.7	10.2	8.8	6.6	3.4						
14. 15.0 14.3 13.8 13.0 11.2 8.1 4.0 to-FOOT TREES 4. 4.0 3.9 3.8 3.7 3.5 3.1 2.7 1.8 6. 6.2 6.0 5.8 5.6 1.4 4.2 3.7 3.1 1.9 7. 7.3 7.0 6.8 6.6 5.8 5.6 1.4 3.9 2.2	$\frac{12}{13}$	2	12.8	12.3 13.3	11.9	11.2 12.1	9.5	7.0	3.6						
	14	4	15.0	14.3	13.8	13.0	11.2	8.1	4.0						
4 4 0 3.9 3.8 3.7 3.5 3.1 2.7 1.8 5 5.1 4.9 4.8 4.6 4.2 3.7 3.1 1.9 6 6.2 6.0 6.8 5.6 5.1 3.4 3.5 2.1 7 7.4 6.7 7.4 6.7 7.4 2.4 9 0.6 0.1 8.8 8.4 7.5 6.3 4.8 2.6 10 10.6 10.2 9.7 9.8 8.3 7.6 6.3 4.4	-			· · · · ·	·	50-F	00T	TREE	s				I		
3.1 3.6 4.6 4.2 3.7 3.1 1.0 6 6.2 6.0 6.8 6.6 6.1 8.5 2.1 $$ 9 9.6 9.7 7.4 8.7 6.7 4.7 6.7 4.7	4		4.0	3 9	3.8	37	3 5	3 1	2.7	18	. :		·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.		5.1	4.9	4.8	4.6	4.2	3.7	3.1	1.9				~ -	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6- 7-		6.2 7.3	6. 0 7. 0	5.8 6.8	5.6 6.5	5.1 5.8	4,4 5.1	3.5	2.1 2.2					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.		8,4	8.0	7.7	7.4	6.7	5.7	4.4	2.4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10)	10.6	10. 2	9.7	9.3	8.3	7.0	5.2	2.8	·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 12	2	11.7	11.1 12.2	10.7 11.8	10.2. 11.2	9.1	8.2	5.5 5.9	2.9					
15 16.2 15.3 14.2 13.4 0 12.5 10.1 7.2 3.6 11.1 1	13	3	13.9	13.3	12.8	12.1	10.6	8.8	6.4	3.3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	5	16.2	14.4 15.3	15.8	13.0	11. 5	10.1	7.2	3. 4 3. 6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16 17	37	17.3	$16.5 \\ 17.4$	$15.8 \\ 16.7$	14.9 15.8	13.1 13.9	10.8	7.6	3.8 3.9					
60-FOOT TREES 5	18	3	19.8.	18.6	17.8	16.8	14.6	12.1	8.4	4.1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. .			· · ·		60 FO	0 0 0 1	<u>ו</u> סדידים						I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·				1	1	<u> </u>		i				1	1	
7	5_		5.1	4.9	4.8	4.6	4.3	4.1	3.8	3:2	2.0				
8. 8.4 8.0 7.8 7.4 6.9 6.2 5.2 4.1 2.4	7_		7.3	7.0	6.8	6.5	6.0	5.5	4.8	3.8	$\frac{2.1}{2.3}$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8-		8.4 9.6	8.0 9.2	8.8	7.4	7.6	6.2	5.2 5.8	4.1	2.4 2.5				
11. 11.	10)	10.6	10.1	9.8	9.3	8.4	7.5	6.3	4.8	2.6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	3	12.8	11.1 12.2	10.7 11.7	10.2 11.2	10.1	8.9	7.4	5.4	2.8				
15 16 2 16 14 8 14 0 12 4 11 0 8 9 6 3 3 3 11	- 13 14	}	13. 9 15. 0	$13.2 \\ 14.3$	12.7 13.7	12.1 13.0	10.9 11.7	9.6 10.3	7.9	5.7 6.0	$\frac{3.0}{3.2}$		3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	Ş	16.2	15.4	14.8	14.0	12.4	11.0	8.9	6:3	3.3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10)	18.5	17.5	16.7	14.9	13. 3	12.4	9.4	0. 7 7. 0	3.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 18	}	19.8 21.0	18.7	17.8	16.8 177	14.9 15.8	13.1	10.4	7.3	3.7	'			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20)	22.2	20. 7	19.7	18.6	16.6	14.5	11.4	7.9	3.9			******	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	2	23. 4 24. 7	21. 9 23. 0	20. 8 21. 7	19.6 20.5	17.4 18.2	15.2 15.9	12.0	8.2 8.5	4.1 4.2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-]			70 F	0.05								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			73	6.0	67	65	6.0	57	5.3	47	3.0	22			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8_		8.4	7.9	7.6	7.4	6.9	6.4	5.8	5.1	4.1	2.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9_ 10		9.6	9.2 10.1	.8.8 9.7	8.4 9.3	7.7	7.1 7.9	6.5 7.0	5.6	4.3 4.6	2.5 2.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		11.7	11.2	10.7	10.2	9.4	8.6	7.6	6.4	4.9	2.7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	}	13.9	12.2 13.2	11.8	11.2 12.1	10.2 11.1	9. 3 10. 1	8. 2 8. 8	0.8 7.2	5. 2 5. 4	2.8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 15	t	15.0	14.1 15.4	13.6 14.7	13.0 14.0	11.9 127	10.8	9.4 10.0	7.7	5.7	3.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	<u>}</u>	17.3	16.3	15.6	14.9	13.6	12.3	10.5	8.5	6.2	3. 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		18.5 19.8	$17.3 \\ 18.4$	$16.6 \\ 17.6$	$15.8 \\ 16.8$	14.4 15.3	$13.0 \\ 13.7$	11.1 11.7	8.9 9.4	$6.4 \\ 6.7$	3, 3 3, 4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 17 18	/		10 0	19 6	17 7	16.1	14.4	12.4	9.8	6.9	3 5			
222	16 17 18 19		21.0	19.0	10.0	18 6	16 0	15 9	12 0	10 0	7 6	3 6			
	16 17 18 19 20 21) }	21. 0 22. 2 23. 4	$ \begin{array}{c} 19.6 \\ 20.4 \\ 21.7 \end{array} $	19. 5 20. 6	18.6 19.6	16. 9 17. 7	$15.2 \\ 15.9$	12, 9 13, 5	10. 2 10. 6	7.2 7.4	3.6 3.7			

40-FOOT TREES

۱

۰.,

)

11.50

 TABLE 48.—Diameters inside bark at intervals above the ground for southern white

 cedar trees of different diameters and heights—Continued

. SO-FOOT TREES

en de la companya de Na companya de la comp				· · ·	Heig	nt abo	ove gro	una—f	eet				
Diameter breast high (inches)	1	2	3	4.5	10	20	30	40	50	60	70	80	9(
					Diam	eter in	side ba	ark—in	ches			·.	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.6 10.6 11.7 12.8 13.9 15.0 16.2 17.3 18.5 19.8 21.0 22.2 23.4 24.7 26.0 27.3	$\begin{array}{c} 9.1\\ 10.1\\ 11.1\\ 12.2\\ 13.1\\ 14.1\\ 15.2\\ 16.2\\ 17.2\\ 18.4\\ 19.4\\ 20.3\\ 21.5\\ 22.6\\ 23.6\\ 24.5\\ \end{array}$	$\begin{array}{c} 8.8\\ 9.7\\ 10.6\\ 11.7\\ 12.6\\ 13.5\\ 14.6\\ 15.5\\ 16.5\\ 17.6\\ 18.5\\ 19.4\\ 20.5\\ 21.5\\ 22.6\\ 23.4\\ 23.4\\ \end{array}$	$\begin{array}{c} 8.4\\ 9.3\\ 10.2\\ 11.2\\ 12.1\\ 13.0\\ 14.0\\ 14.9\\ 15.8\\ 16.8\\ 17.7\\ 18.6\\ 19.6\\ 20.5\\ 21.5\\ 21.5\\ 22.4\end{array}$	$\begin{array}{c} 7.9\\ 8.7\\ 9.6\\ 10.4\\ 11.3\\ 12.1\\ 12.9\\ 13.9\\ 14.6\\ 15.5\\ 16.4\\ 17.2\\ 18.9\\ 19.8\\ 20.6\\ \end{array}$	$\begin{array}{c} 7.4\\ 8.2\\ 8.9\\ 9.7\\ 10.4\\ 11.2\\ 11.9\\ 12.7\\ 13.5\\ 14.2\\ 14.9\\ 15.7\\ 16.4\\ 17.2\\ 17.9\\ 18.6 \end{array}$	$\begin{array}{c} 6.9\\ 7.5\\ 8.2\\ 8.8\\ 9.4\\ 10.1\\ 10.7\\ 11.3\\ 12.0\\ 12.6\\ 13.2\\ 13.9\\ 14.5\\ 15.2\\ 15.8\\ 16.4 \end{array}$	$\begin{array}{c} 6.3\\ 6.8\\ 7.3\\ 7.8\\ 8.3\\ 9.8\\ 9.3\\ 9.8\\ 10.3\\ 10.8\\ 11.3\\ 11.8\\ 12.8\\ 12.8\\ 13.4\\ 13.9\end{array}$	5.5 5.9 6.2 6.6 7.3 7.6 8.0 8.4 8.7 9.1 9.4 9.4 10.5 10.9	$\begin{array}{r} 4.3\\ 4.5\\ 4.8\\ 5.2\\ 5.4\\ 5.8\\ 6.2\\ 6.5\\ 6.7\\ 7.3\\ 7.5\\ \end{array}$	25677890 2377890 3323345678 33345678 3333333		
	i			90-F	T 00	TREF	XS'	•		•			
12 13 14 15 16 17 18 19 20 21 22 23 24	12.8 13.9 15.0 16.2 17.3 18.5 19.8 21.0 22.2 24.7 24.7 26.0 27.3	$\begin{array}{c} 12,2\\ 13,1\\ 14,1\\ 15,1\\ 16,1\\ 17,1\\ 18,2\\ 19,1\\ 20,2\\ 21,3\\ 22,3\\ 23,4\\ 24,4\\ \end{array}$	$\begin{array}{c} 11.7\\ 12.6\\ 13.6\\ 15.5\\ 16.4\\ 17.5\\ 18.4\\ 19.4\\ 20.4\\ 21.4\\ 22.4\\ 23.3 \end{array}$	$\begin{array}{c} 11.\ 2\\ 12.\ 1\\ 13.\ 0\\ 14.\ 0\\ 15.\ 8\\ 16.\ 8\\ 17.\ 7\\ 18.\ 6\\ 19.\ 6\\ 20.\ 5\\ 21.\ 5\\ 22.\ 4\end{array}$	$\begin{array}{c} 10.5\\ 11.5\\ 12.2\\ 13.1\\ 14.0\\ 14.8\\ 15.7\\ 16.6\\ 17.4\\ 18.2\\ 19.1\\ 20.0\\ 20.8\\ \end{array}$	9.8 10.7 11.4 12.2 12.9 13.7 14.5 15.3 06.0 16.8 17.6 18.4 19.1	9.2 9.9 10.5 11.2 11.9 12.6 13.2 13.9 14.5 15.3 16.0 16.6 17.3	$\begin{array}{c} 8.5\\ 9.1\\ 9.6\\ 10.2\\ 10.7\\ 11.3\\ 11.9\\ 12.4\\ 13.0\\ 13.6\\ 14.1\\ 14.7\\ 15.2 \end{array}$	$\begin{array}{c} 7.7\\ 8.1\\ 8.5\\ 9.0\\ 9.4\\ 9.8\\ 10.3\\ 10.7\\ 11.2\\ 11.6\\ 12.0\\ 12.5\\ 12.9\end{array}$	$\begin{array}{c} 6.5\\ 6.8\\ 7.1\\ 7.4\\ 7.7\\ 8.0\\ 8.3\\ 8.6\\ 8.9\\ 9.2\\ 9.5\\ 9.9\\ 10.2 \end{array}$	$\begin{array}{c} \textbf{4.9}\\ \textbf{5.1}\\ \textbf{5.2}\\ \textbf{5.6}\\ \textbf{5.8}\\ \textbf{5.9}\\ \textbf{6.3}\\ \textbf{6.5}\\ \textbf{6.5}\\ \textbf{6.7}\\ \textbf{6.8}\\ \textbf{7.0} \end{array}$	$\begin{array}{c} 2.8\\ 2.9\\ 3.0\\ 3.1\\ 3.3\\ 3.3\\ 3.4\\ 3.5\\ 3.5\\ 3.6\\ 3.7\end{array}$	
			. *	100-I	TOOT	TRE	ES				• •		
12	- 12.8 - 13.9 - 15.0 - 16.2 - 17.3 - 18.5 - 19.8 - 21.1 - 22.2 - 23.4 - 24.7 - 26.0 - 27.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11.5 \\ 12.5 \\ 13.5 \\ 14.5 \\ 15.3 \\ 16.3 \\ 17.4 \\ 18.4 \\ 19.4 \\ 20.5 \\ 21.4 \\ 22.4 \\ 23.2 \\ 1000 \\ 21.4 \\ 23.2 \\ 2000 \\ 21.4 \\ 23.2 \\ 2000 \\ 21.4 \\ 23.2 \\ 2000 \\ $	$\begin{array}{c} 11.\ 2\\ 12.\ 1\\ 13.\ 0\\ 14.\ 0\\ 14.\ 9\\ 15.\ 8\\ 16.\ 8\\ 17.\ 7\\ 18.\ 6\\ 19.\ 6\\ 20.\ 5\\ 21.\ 5\\ 22.\ 4\end{array}$	$ \begin{vmatrix} 10.7 \\ 11.5 \\ 12.4 \\ 13.3 \\ 14.2 \\ 15.0 \\ 15.9 \\ 16.7 \\ 17.6 \\ 18.5 \\ 19.4 \\ 20.2 \\ 21.1 \end{vmatrix} $	$\begin{array}{c} 10.\ 1\\ 10.\ 9\\ 11.\ 6\\ 12.\ 4\\ 13.\ 2\\ 14.\ 0\\ 14.\ 8\\ 15.\ 5\\ 16.\ 3\\ 17.\ 1\\ 17.\ 9\\ 18.\ 7\\ 19.\ 4\end{array}$	$\begin{array}{c} 9.5\\ 10.3\\ 11.0\\ 11.7\\ 12.3\\ 13.1\\ 13.8\\ 14.5\\ 15.2\\ 15.9\\ 16.6\\ 17.3\\ 18.0\\ \end{array}$	$\left \begin{array}{c}9.0\\-9.5\\10.2\\10.8\\11.4\\12.0\\12.6\\13.2\\13.9\\14.4\\15.0\\15.6\\16.2\end{array}\right $	8.3 8.8 9.3 9.8 10.3 10.8 11.3 11.8 12.3 12.8 13.3 13.8 14.3	$\begin{array}{c} 7.6\\ 8.0\\ 8.4\\ 9.1\\ 9.5\\ 9.9\\ 10.3\\ 10.6\\ 11.0\\ 11.4\\ 11.8\\ 12.1\\ \end{array}$	6.4 6.7 7.0 7.3 7.5 7.7 8.0 8.2 8.5 8.8 9.1 9.3 9.6	4.8 4.9 5.1 5.2 5.5 5.7 5.9 6.2 6.2 6.5 6.6	

 TABLE 49.—Form factors and form quotients for southern white cedar in Virginia, North Carolina, New Jersey, and Florida 1

Diameter breast high (inches)	Form Inside bark	factor ² Outside bark	Form quo- tient ³ Inside bark	Basis (trees)	Diameter breast high (inches)	Form Inside bark	factor ² Outside bark	Form quo- tient ³ Inside bark	Basis (trees)
1 2 3. 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} 1.\ 150\\ .\ 970\\ .\ 914\\ .\ 897\\ .\ 890\\ .\ 881\\ .\ 872\\ .\ 865\\ .\ 858\\ .\ 850\\ .\ 842\\ .\ 837\\ .\ 830\\ \end{array}$	$\begin{array}{c} 1.\ 669\\ 1.\ 335\\ 1.\ 195\\ 1.\ 148\\ 1.\ 118\\ 1.\ 092\\ 1.\ 070\\ 1.\ 050\\ 1.\ 032\\ 1.\ 018\\ 1.\ 002\\ .\ 988\\ .\ 973\\ \end{array}$	$\begin{array}{c} 0.544\\ .590\\ .629\\ .663\\ .682\\ .690\\ .692\\ .688\\ .669\\ .656\\ .648\\ .643\\ .643\\ .641\\ \end{array}$	21 25 20 36 25 30 24 30 24 30 24 26 28 26 28 26 21	14 15 16 17 18 19 20 21 21 23 24 Total	0. 823 . 819 . 815 . 810 . 808 . 803 . 801 . 799 . 797 . 793 . 790	0. 960 948 938 925 916 910 907 901 898 898 893 899	$\begin{array}{c} 0.\ 640\\ .\ 638\\ .\ 636\\ .\ 634\\ .\ 634\\ .\ 627\\ .\ 624\\ .\ 620\\ .\ 617\\ .\ 613\\ .\ 609\end{array}$	11 9 13 5 6 9 8 3 3 3 2 2 405

¹ The form factors and form quotients are curved. ² Average volume of tree with and without bark divided by the volume of a paraboloid of the same breast-high diameter outside bark and same total height. ³ Ratio of diameter inside bark at one-half the height above breast height to the breast-high diameter inside bark.

	1						
Diameter, outside bark (inches)	Single thickness of bark						
		·					·
1	Inches 0 11	q	Inches	17	Inches	07	Inches
2	. 15	10	. 40	18	0.58	2526	0,80
a 4	.19 .22	11	$.42 \\ .45$	19 20	. 64	27	. 85
56	.25	13	.47	21	. 69	29	. 91
7	. 31	15	. 50	23	. 72 . 75	30	. 94
8	. 34	16	. 55	24	. 77		

TABLE 50.—Bark thickness in southern white cedar¹

¹ This table shows the thickness of bark, on radial sections of various diameters, for southern white cedar throughout its range. Based on 3,426 measurements on 469 trees in southeastern New Jersey, south-eastern Virginia, eastern North Carolina, Darlington County, S. C., Calhoun County, Fla., Escambia County, Ala., and Pearl River County, Miss.